
Big Data: Known Asteroids

Max Oakes
Last updated 3/11/22

What is in this dataset?

● Comes from https://www.kaggle.com/sakhawat18/asteroid-dataset
● Asteroids that have been observed, and many orbital statistics and physical

properties
● Contains about 950,000 objects
● ~45 columns
● Single table
● Half of the columns did not have

descriptions from the author

Obj internal ID Primary SPK-ID Full name/ designation Primary designation

Eccentricity Semi-major axis au Unit perihelion distance au Unit Inclination (degrees)

Absolute magnitude
parameter

object diameter km Unit Geometric albedo 1-sigma uncertainty in
object diameter (km)

Time of perihelion
passage TDB Unit

Earth Minimum Orbit
Intersection Distance au
Unit

Standard deviation of all metrics IAU name

Prefix Near-Earth Object Potentially Hazardous Asteroid Longitude of Ascending
Node (Omega)

Arg. of Periapsis
(omega)

Mean anomaly(?) True anomaly (nu) Solution ID

Epoch of osculation
in modified Julian
day form

Epoch, mean Julian
date

Equinox of reference frame Asteroid class
abbreviation

https://www.kaggle.com/sakhawat18/asteroid-dataset

Processing the dataset

● Source was in CSV format
● Wrote a Python script to write a CREATE

TABLE statement for the data, and all INSERT
INTO statements

● The script attempts to get the domain of the
row, but manual review is needed

● Executing the python script on this dataset
takes about 1 minute

import csv
import sys

def main():
 if len(sys.argv) != 3:
 print("usage: ddl.py <input CSV filename> <output table name>")
 return

 input_csv = open(sys.argv[1], 'r', newline='')
 csv_reader = csv.reader(input_csv)

 outputFile = "%s.sql" % (sys.argv[2])
 f = open(outputFile, "w")
 nameTypePairs = []
 for line in csv_reader:
 # print("Evaluating line %s" % (csv_reader.line_num))
 lineString = ""
 #create table
 if (csv_reader.line_num == 1):
 lineString = "CREATE TABLE %s (\n" % (sys.argv[2])

 #estimate row type (based on first data row), may need manual
adjustment
 nextLine = csv_reader.__next__()
 for i in range(0,len(line)):
 try:
 t = int(nextLine[i])
 # print("%s is an int" % (line[i]))
 nameTypePairs.append((line[i],"int"))
 continue
 except ValueError:
 pass
 try:
 t = float(nextLine[i])
 # print("%s is a float" % (line[i]))
 nameTypePairs.append((line[i],"float"))
 continue
 except ValueError:
 pass
 # print("%s must be a string" % (line[i]))
 nameTypePairs.append((line[i],"varchar(50)"))

 #write CREATE TABLE statement content
 for p in range(len(nameTypePairs)):
 if p != len(nameTypePairs)-1:
 lineString = lineString + "\t" + " " +
str(nameTypePairs[p][0]) + " " + str(nameTypePairs[p][1]) + ",\n"
 else:
 lineString = lineString + "\t" + " " +
str(nameTypePairs[p][0]) + " " + str(nameTypePairs[p][1]) + "\n);\n\n"
 print(lineString)
 f.write(lineString)
 print("Writing row data to file. Please wait...")

 #data rows
 else:
 lineString = "INSERT INTO %s VALUES (" % (sys.argv[2])
 #write INSERT INTO statements for each row
 for i in range(len(line)):
 item = line[i].strip()
 item = item.replace("'","''")
 #insert null if there is no item in the cell
 if (not item):
 item = "NULL"
 else:
 item = "'" + item + "'"
 #if it is a float value, make it in the correct notation
 try:
 float(item)
 item = format(item, '.12f')
 except:
 pass

 #prepare the row for writing
 if i != len(line)-1:
 lineString = lineString + item + ","
 else:
 lineString = lineString + item + ");\n"

 #print(lineString)
 f.write(lineString)

 input_csv.close()

if __name__=="__main__":
 main()

Processing the dataset

● Manually edited CREATE TABLE statement to
update names to be more descriptive

● Added primary key
● Added enum for asteroid classification
● Used pgAdmin 4 as the query tool
● Ran the SQL script

○ Took about 5 minutes to insert all rows into the table

DROP TYPE IF EXISTS classification CASCADE;
CREATE TYPE classification AS ENUM
('AMO','APO','AST','ATE','CEN','HYA','IEO','IMB','MBA',
'MCA','OMB','PAA','TJN','TNO');

DROP TABLE IF EXISTS asteroids;
CREATE TABLE asteroids (

 id varchar(50),
 spkid int,
 full_name varchar(50),
 pdes varchar(50),
 fancy_name varchar(50),
 prefix varchar(50),
 neo boolean,
 pha boolean,
 absmag float,
 diameter float,
 albedo float,
 sigma_diameter float,
 orbit_id varchar(50),
 epoch float,
 epoch_mjd int,
 epoch_cal float,
 eccentricity float,
 semimajor_axis float,
 perihelion float,
 inclination float,
 asc_node_long float,
 arg_periapsis float,
 mean_anomaly float,
 ad float,
 true_anomaly float,
 time_peri_pass float,
 time_peri_calendar float,
 per float,
 per_y float,
 moid float,
 moid_ld float,
 sigma_eccentricity float,
 sigma_semimajor_axis float,
 sigma_perihelion float,
 sigma_inclination float,
 sigma_asc_node_long float,
 sigma_arg_periapsis float,
 sigma_mean_anomaly float,
 sigma_ad float,
 sigma_true_anomaly float,
 sigma_time_peri_pass float,
 sigma_per float,
 class classification,
 rms float,

 PRIMARY KEY (id)
);

Additional Modifications

● After creating and filling the table, I realized I can
benefit from a second table that lists the classes of
asteroids and their description

● I created an SQL script to create this table, and
integrate that into the asteroid table

DROP TABLE IF EXISTS classes;
CREATE TABLE classes (
 id int NOT NULL,
 abbr varchar(5),
 name varchar(40),
 description varchar(200),
 PRIMARY KEY (id)
);

INSERT INTO classes VALUES ('1','AMO','Amor','Near-Earth asteroid orbits similar to that of 1221 Amor (a > 1.0 AU; 1.017 AU < q < 1.3 AU).');
INSERT INTO classes VALUES ('2','APO','Apollo','Near-Earth asteroid orbits which cross the Earth''s orbit similar to that of 1862 Apollo (a > 1.0 AU; q < 1.017 AU).');
INSERT INTO classes VALUES ('3','AST','Asteroid','Asteroid orbit not matching any defined orbit class.');
INSERT INTO classes VALUES ('4','ATE','Aten','Near-Earth asteroid orbits similar to that of 2062 Aten (a < 1.0 AU; Q > 0.983 AU).');
INSERT INTO classes VALUES ('5','CEN','Centaur','Objects with orbits between Jupiter and Neptune (5.5 AU < a < 30.1 AU).');
INSERT INTO classes VALUES ('6','HYA','Hyperbolic Asteroid','Asteroids on hyperbolic orbits (e > 1.0).');
INSERT INTO classes VALUES ('7','IEO','Interior Earth Object','An asteroid orbit contained entirely within the orbit of the Earth (Q < 0.983 AU).');
INSERT INTO classes VALUES ('8','IMB','Inner Main-belt Asteroid','Asteroids with orbital elements constrained by (a < 2.0 AU; q > 1.666 AU).');
INSERT INTO classes VALUES ('9','MBA','Main-belt Asteroid','Asteroids with orbital elements constrained by (2.0 AU < a < 3.2 AU; q > 1.666 AU).');
INSERT INTO classes VALUES ('10','MCA','Mars-crossing Asteroid','Asteroids that cross the orbit of Mars; constrained by (1.3 AU < q < 1.666 AU; a < 3.2 AU).');
INSERT INTO classes VALUES ('11','OMB','Outer Main-belt Asteroid','Asteroids with orbital elements constrained by (3.2 AU < a < 4.6 AU).');
INSERT INTO classes VALUES ('12','PAA','Parabolic Asteroid','Asteroids on parabolic orbits (e = 1.0).');
INSERT INTO classes VALUES ('13','TJN','Jupiter Trojan','Asteroids trapped in Jupiter''s L4/L5 Lagrange points (4.6 AU < a < 5.5 AU; e < 0.3).');
INSERT INTO classes VALUES ('14','TNO','Trans Neptunian Object','Objects with orbits outside Neptune (a > 30.1 AU).');

ALTER TABLE asteroids
ADD classID int;
ALTER TABLE asteroids ADD FOREIGN KEY(classID) REFERENCES classes(id) ON DELETE SET NULL;

UPDATE asteroids SET classID = 1 WHERE class = 'AMO';
UPDATE asteroids SET classID = 2 WHERE class = 'APO';
UPDATE asteroids SET classID = 3 WHERE class = 'AST';
UPDATE asteroids SET classID = 4 WHERE class = 'ATE';
UPDATE asteroids SET classID = 5 WHERE class = 'CEN';
UPDATE asteroids SET classID = 6 WHERE class = 'HYA';
UPDATE asteroids SET classID = 7 WHERE class = 'IEO';
UPDATE asteroids SET classID = 8 WHERE class = 'IMB';
UPDATE asteroids SET classID = 9 WHERE class = 'MBA';
UPDATE asteroids SET classID = 10 WHERE class = 'MCA';
UPDATE asteroids SET classID = 11 WHERE class = 'OMB';
UPDATE asteroids SET classID = 12 WHERE class = 'PAA';
UPDATE asteroids SET classID = 13 WHERE class = 'TJN';
UPDATE asteroids SET classID = 14 WHERE class = 'TNO';

ALTER TABLE asteroids DROP COLUMN class;
DROP TYPE classification;

20+ Questions

How many asteroids have ‘formal’ names? (and list a few of them)

SELECT count(*)
FROM asteroids
WHERE fancy_name is not null;

SELECT fancy_name
FROM asteroids
WHERE fancy_name is not null
LIMIT 12;

Question 1

Basically, if there is a ‘fancy name’, the asteroid is named after
something. Other asteroids have the name in a form like “4835 (1989
BQ)”

fancy_names
Ceres
Pallas
Juno
Vesta
Astraea
Hebe
Iris
Flora
Metis
Hygiea
Parthenope
Victoria

count
22064

How many asteroids do not have a recorded size? What percentage of the
asteroids in the database do not have a size recorded?

SELECT count(*)
FROM asteroids
WHERE diameter is null;

SELECT (count(*)/(
SELECT count(*) FROM
asteroids)::FLOAT)*100 as
not_recorded

FROM asteroids
WHERE diameter is null;

Question 2

So, almost 86% of the asteroids in the database do not have a size
recorded. Likely, we know what their orbit is, but we do not have a
good estimate of the size.

count
8822315

not_recorded
85.7897141855603

Of the asteroids that we know the sizes of, what are the 20 smallest ones and their
sizes in meters?

SELECT full_name, diameter*1000 as
diameter_m

FROM asteroids
ORDER BY diameter
LIMIT 20;

Question 3

In the table, the units for diameter are km, so the query result needs to
be adjusted a bit.

full_name diameter_m
(2012 XB112) 2.5
(2010 FD6) 8
(2010 GH7) 8
(2010 KV7) 13
(2010 FR9) 15
(2010 FT) 18
(2010 TN4) 18
(2010 DL) 19
(2010 FS) 23
(2010 FW9) 24
(2010 YD) 26
(2002 JR100) 28
(2010 FX9) 30
(1998 KY26) 30
(2010 HA) 32
(2010 JJ3) 32
(2010 CO44) 34
(2010 JO71) 37
(2010 QG2) 38
(2010 JW39) 39

What are the known top 20 largest asteroids and what is their diameter in miles?

SELECT full_name,
round(CAST(diameter*0.621371 as
numeric), 4) as diameter_mi

FROM asteroids
where diameter is not null
ORDER BY diameter DESC
LIMIT 20;

Question 4

In the table, the units for diameter are km, so the query result needs to
be adjusted a bit.

In order to truncate the many digits in a double precision, I had to cast
to a numeric and truncate the digits using a function.

full_name diameter_mi
1 Ceres 583.7159
20000 Varuna (2000 WR106) 559.2339
2 Pallas 338.6472
4 Vesta 326.4683
10 Hygiea 252.9726
15789 (1993 SC) 203.8097
704 Interamnia (1910 KU) 190.334
52 Europa 188.8458
10199 Chariklo (1997 CU26) 187.654
511 Davida (1903 LU) 167.9734
31 Euphrosyne 165.9558
451 Patientia (1899 EY) 157.7661
87 Sylvia 157.2386
3 Juno 153.2276
65 Cybele 147.4265
88 Thisbe 144.1581
15 Eunomia 143.9648
95626 (2002 GZ32) 143.226
16 Psyche 140.4298
624 Hektor (1907 XM) 139.8085

Of the largest 1000 asteroids, which 15 have the smallest eccentricity?

SELECT full_name, diameter,
eccentricity
FROM (

SELECT *
FROM asteroids
WHERE diameter is not null
ORDER BY diameter DESC
LIMIT 1000

) as largest
ORDER BY eccentricity
LIMIT 15;

Question 5

Orbital eccentricity determines the
amount by which its orbit around another
body deviates from a perfect circle.

e = 0 is a circular orbit
0 < e < 1 is an elliptic orbit
e =1 is a parabolic escape orbit
e > 1 is a hyperbola.

full_name diameter (in km) eccentricity
1262 Sniadeckia (1933 FE) 71.011 0.00459534174
4754 Panthoos (5010 T-3) 53.025 0.007840463
508 Princetonia (1903 LQ) 117.241 0.008150032768
1308 Halleria (1931 EB) 46.951 0.01123433027
5130 Ilioneus (1989 SC7) 60.711 0.01126255871
208 Lacrimosa 40.056 0.01191309814
1838 Ursa (1971 UC) 40.054 0.01470903061
2207 Antenor (1977 QH1) 97.658 0.0148056264
15502 (1999 NV27) 53.1 0.01548989195
196 Philomela 144.626 0.01572406943
702 Alauda (1910 KQ) 190.98 0.01710190003
2223 Sarpedon (1977 TL3) 77.48 0.01772377249
4867 Polites (1989 SZ) 57.251 0.01871111508
1647 Menelaus (1957 MK) 42.716 0.02115375445
528 Rezia (1904 NS) 91.966 0.02117100109

Of the 1000 asteroids with the highest eccentricity, what are the 20 that have the
smallest perihelion in AU?

SELECT full_name, eccentricity,
perihelion
FROM (

SELECT *
FROM asteroids
ORDER BY eccentricity DESC
LIMIT 1000

) as widest
ORDER BY perihelion
LIMIT 20;

Question 6

The perihelion is defined as the distance in an orbit where an object is
closest to the sun.

For reference, 0.07 AU is about 10,500,000 km.

full_name eccentricity perihelion (in AU)
(2005 HC4) 0.9613212183 0.07051073204
(2020 BU13) 0.970394722 0.07312539742
(2017 TC1) 0.9695289871 0.07587192754
(2017 MM7) 0.9615701466 0.07924409951
(2008 FF5) 0.9651477164 0.0793792941
(2015 EV) 0.9602607237 0.08074429596
394130 (2006 HY51) 0.9683957212 0.08181996324
(2016 GU2) 0.9574974744 0.0873170149
(2019 JZ6) 0.9633213451 0.09079732509
(2019 AM13) 0.9297880881 0.09102190758
137924 (2000 BD19) 0.8950019842 0.09202463497
374158 (2004 UL) 0.926620592 0.09292416119
394392 (2007 EP88) 0.8858639314 0.09556534232
(2011 KE) 0.9545352937 0.1003088256
465402 (2008 HW1) 0.9599976925 0.1034743081
(2015 HG) 0.9500904688 0.1047956752
(2012 US68) 0.9579045737 0.105371839
(2011 XA3) 0.9259661436 0.10858392
(2018 GG5) 0.944725539 0.1098178443
399457 (2002 PD43) 0.9559445715 0.1104958793

Of the asteroids flagged as potentially hazardous, what are the 10 that have the
lowest eccentricity?

SELECT full_name, eccentricity
FROM asteroids
WHERE pha is true
ORDER BY eccentricity
LIMIT 10;

Question 7

A potentially hazardous an asteroid (PHA) is an asteroid whose orbit
comes nearer than 0.05AU (about 7.5 million km) to the Earth and
whose brightness implies a size of the order of about 100m across or
more.

“WHERE pha” could have been used instead, but the verbose query
above is making it clear that PHA is a boolean value.

full_name eccentricity
(2018 EB) 0.01217587595
(2005 TF49) 0.02545288003
(2011 DV) 0.04986977888
(2004 LB) 0.05288329937
(2014 WT202) 0.06301564512
474163 (1999 SO5) 0.06519877357
(2008 EE5) 0.07158705769
365071 (2009 AV) 0.07395467766
419624 (2010 SO16) 0.07542896203
385186 (1994 AW1) 0.07576828008

Of the named asteroids that are not potentially hazardous,
which one’s names have the suffix ‘-eus’?

SELECT full_name, fancy_name
FROM asteroids
WHERE pha is not true and
fancy_name like '%eus';

Question 8

Turns out there are only 36 of them.

“WHERE not pha” could have been used instead, but the verbose query
above is making it clear that PHA is a boolean value.

full_name fancy_name
2174 Asmodeus (1975 TA) Asmodeus

2213 Meeus (1935 SO1) Meeus

2759 Idomeneus (1980 GC) Idomeneus

3793 Leonteus (1985 TE3) Leonteus

4001 Ptolemaeus (1949 PV) Ptolemaeus

4068 Menestheus (1973 SW) Menestheus

4197 Morpheus (1982 TA) Morpheus

5130 Ilioneus (1989 SC7) Ilioneus

5259 Epeigeus (1989 BB1) Epeigeus

5731 Zeus (1988 VP4) Zeus

7152 Euneus (1973 SH1) Euneus

7412 Linnaeus (1990 SL9) Linnaeus

8125 Tyndareus (5493 T-2) Tyndareus

8600 Arundinaceus (3060 T-2) Arundinaceus

8752 Flammeus (2604 P-L) Flammeus

8757 Cyaneus (6600 P-L) Cyaneus

8968 Europaeus (1212 T-2) Europaeus

9907 Oileus (6541 P-L) Oileus

11311 Peleus (1993 XN2) Peleus

12607 Alcaeus (2058 P-L) Alcaeus

12916 Eteoneus (1998 TL15) Eteoneus

14791 Atreus (1973 SU) Atreus

20952 Tydeus (5151 T-2) Tydeus

24587 Kapaneus (4613 T-2) Kapaneus

24603 Mekistheus (1973 SQ) Mekistheus

30704 Phegeus (3250 T-3) Phegeus

32532 Thereus (2001 PT13) Thereus

39463 Phyleus (1973 SZ) Phyleus

58096 Oineus (1973 SC2) Oineus

73637 Guneus (1973 SX1) Guneus

1143 Odysseus (1930 BH) Odysseus

136557 Neleus (5214 T-2) Neleus

173086 Nireus (2007 RS8) Nireus

188847 Rhipeus (2006 FT9) Rhipeus

1809 Prometheus (2522 P-L) Prometheus

1810 Epimetheus (4196 P-L) Epimetheus

How many near-earth objects are there that are not potentially hazardous?

SELECT count(*)
FROM asteroids
WHERE not pha and neo;

SELECT count(*)
FROM asteroids
WHERE pha and not neo;

Question 9

A near-Earth object is an asteroid or comet which passes close to the
Earth's orbit. In technical terms, a NEO is considered to have a trajectory
which brings it within 1.3 astronomical units of the Sun and hence within
0.3 astronomical units, or approximately 45 million kilometres, of the
Earth's orbit.

count
20828

count
0

Bonus query! A potentially hazardous
asteroid also needs to be considered an
NEO. You cannot have a PHA that is not
a NEO.

How many asteroids are named only after a year and an alphanumeric
designation?

SELECT count(*)
FROM asteroids
WHERE full_name ~

'^\([0-9]{4}\s[A-Z0-9\-]+\)';

Question 10

This query is mainly an exercise in regular expressions. This regular
expression accepts a string like ‘(2003 TY29)’

count
413371

Of the 100 smallest asteroids, which 20 have the most uncertainty about their size
(standard deviation)?

SELECT full_name, diameter,
sigma_diameter
FROM (

SELECT *
FROM asteroids
ORDER BY diameter
LIMIT 100

) as smallest
WHERE sigma_diameter is not null
ORDER BY sigma_diameter DESC
LIMIT 20;

Question 11

full_name diameter sigma_diameter
(2014 VP35) 0.122 0.051
(2010 VT11) 0.152 0.044
(2010 LJ68) 0.193 0.037
(2014 RH12) 0.088 0.036
(2010 JG) 0.192 0.03
(2010 LJ61) 0.192 0.03
(2009 WA) 0.164 0.03
264357 (2000 AZ93) 0.113 0.029
(2010 HZ104) 0.14 0.025
(2010 GA7) 0.151 0.024
469445 (2002 LT24) 0.143 0.024
(2010 LL68) 0.153 0.024
(2011 AV55) 0.063 0.024
(2010 CF55) 0.176 0.022
(2010 GB6) 0.134 0.021
411165 (2010 DF1) 0.159 0.02
(2010 KA8) 0.183 0.019
(2010 LK61) 0.191 0.019
475016 (2005 UO) 0.164 0.019
(2010 WB) 0.057 0.018

Of the different classes of asteroids, what is their count per class, average size,
eccentricity, perihelion and albedo?

SELECT class, count(*),
avg(diameter) as avg_dia,

avg(eccentricity) as avg_e,
avg(perihelion) as avg_q,
avg(albedo) as avg_albedo

FROM asteroids
GROUP BY class;

Question 12

class count avg_dia avg_e avg_q avg_albedo
AMO 8457 1.752 0.4044 1.1294 0.1732
APO 12687 0.9556 0.4869 0.8129 0.1736
AST 76 13.0441 0.4418 2.825 0.0632
ATE 1729 0.6157 0.3225 0.6075 0.2308
CEN 506 52.7312 0.4401 8.9468 0.0768
HYA 4 [null] 1.2645 5.0488 [null]
IEO 22 [null] 0.3443 0.4545 [null]
IMB 20360 2.2999 0.0757 1.7687 0.428

MBA 855954 5.0964 0.1479 2.2882 0.1335
MCA 18685 3.3286 0.2981 1.5531 0.1888
OMB 28355 8.7813 0.1428 2.889 0.0668
TJN 8221 20.7805 0.0738 4.8162 0.0739
TNO 3468 155.48 0.2212 35.9493 0.0617

IMB Inner Main-belt Asteroid

MBA Main-belt Asteroid

MCA Mars-crossing Asteroid

OMB Outer Main-belt Asteroid

TJN Jupiter Trojan

TNO Trans Neptunian Object

AMO Amor

APO Apollo

AST Asteroid

ATE Aten

CEN Centaur

HYA Hyperbolic Asteroid

IEO Interior Earth Object

For reference:

Of the asteroids that have an eccentricity of less than 0.5 and a perihelion of less than 1 AU, (and
that have a recorded albedo) what is the average albedo per classification?

SELECT c.name, avg(albedo)
FROM asteroids as a join classes as
c on a.classid=c.id
WHERE eccentricity < 0.5

and perihelion < 1.0
and albedo is not null

GROUP BY c.name;

Question 13

Albedo refers to an object's measure of reflectivity, or intrinsic brightness.
A white, perfectly reflecting surface has an albedo of 1.0; a black,
perfectly absorbing surface has an albedo of 0.0.

Apollo Class: Asteroids which cross Earth's orbit with a period greater
than 1 year.
Aten Class: Asteroids which cross Earth's orbit with a period less than 1
year.

class avg (albedo)
Apollo 0.18666480446927372
Aten 0.2327142857142857

Of the asteroids that have an eccentricity of less than 0.5 (not really elongated) and a perihelion of
greater than 1 AU, (and that have a recorded albedo) what is the average albedo per classification,
and count per classification?

SELECT c.name, avg(albedo),
count(*)
FROM asteroids as a join classes as
c on a.classid=c.id
WHERE eccentricity < 0.5

and perihelion > 1.0
and albedo is not null

GROUP BY c.name;

Question 14

class Avg (albedo) count
Amor 0.2061948052 154
Apollo 0.1558125 16
Asteroid 0.06233333333 6
Centaur 0.0785 28
Inner Main-belt Asteroid 0.4280305206 557
Jupiter Trojan 0.07392786973 1873
Main-belt Asteroid 0.133521741 124001
Mars-crossing Asteroid 0.194153869 336
Outer Main-belt Asteroid 0.06688943615 7431
Trans Neptunian Object 0.046 2

What is the ratio in average asteroid size to those in the inner-main belt to the
outer belt? (InnerBeltSize/OuterBeltSize)

SELECT (
SELECT avg(diameter)
FROM asteroids as a join classes as c

on a.classid=c.id
WHERE c.abbr='IMB'

) / (
SELECT avg(diameter)
FROM asteroids as a join classes as c

on a.classid=c.id
WHERE c.abbr='OMB'

) as ratio;

Question 15

We didn’t even need a FROM clause in the top level of the query.

It looks like asteroids on the main belt closer to the sun are on average a
fourth of the size of the asteroids on the outside of the main belt.

ratio
0.26191174314939014

How many trans-Neptunian objects are orbiting in retrograde (inclination greater
than 90o)? And what is the average inclination of those objects?

SELECT count(*), avg(inclination)
FROM asteroids as a

join classes as c on a.classid=c.id
WHERE c.abbr='TNO' and inclination > 90;

Question 16

Inclination is the angle at which an object is
orbiting a body.
When i = 0, it is an equatorial orbit,
When i = 90, it is a polar orbit,
When i > 90, it is a retrograde orbit.

count avg
51 129.26051965603924

How many asteroids orbiting the sun are within 0.05 degrees of equatorial
prograde? (i = 0 +/- 0.05o), and what is the average eccentricity?

SELECT count(*), avg(eccentricity)
FROM asteroids
WHERE inclination < 0.05;

Question 17

Inclination is the angle at which an object is
orbiting a body.
When i = 0, it is an equatorial orbit,
When i = 90, it is a polar orbit,
When i > 90, it is a retrograde orbit.

count avg
56 0.19311544752753154

What are the known asteroids that have an inclination of less than 0.1o and an eccentricity of
less than 0.1, (very circular orbit, and very ‘flat’ orbit) and what is their class?

SELECT c.name, count(*)
FROM asteroids as a

join classes as c on a.classid=c.id
WHERE inclination < 0.1
and eccentricity < 0.1
GROUP BY c.name;

Question 18

count count
Main-belt Asteroid 23
Outer Main-belt Asteroid 2
Trans Neptunian Object 1

What is the minimum, average and maximum inclination per class?

SELECT c.abbr, count(*),
min(inclination), avg(inclination),
max(inclination)

FROM asteroids as a
join classes as c on a.classid=c.id
GROUP BY c.abbr;

Question 19

class count min avg max
AMO 8457 0.1320273752 13.55506268 159.0274588
APO 12687 0.02234662411 11.8152722 165.5410004
AST 76 1.653165083 21.79422131 163.1271026
ATE 1729 0.01351816639 12.50121499 65.83072462
CEN 506 0.9306363758 32.01648074 175.0829007
HYA 4 8.643584006 89.89551949 138.3809732
IEO 22 2.017520278 22.14155075 49.66151449
IMB 20360 0.7206441103 21.2906283 58.7443513
MBA 855954 0.007744219815 8.388177386 92.04431335
MCA 18685 0.09643805468 14.99666309 73.37315049
OMB 28355 0.03812908844 11.28143321 84.37279527
TJN 8221 0.1086573645 13.4208408 57.9108851
TNO 3468 0.03950137158 14.61498157 172.1361464

How many objects have an inclination of 90 +/- 5 degrees? What is the average
eccentricity?

SELECT count(*), avg(eccentricity)
FROM asteroids
WHERE inclination > 85 and
inclination < 95;

Question 20

class avg
21 0.7965265416017784

Asteroids that are close to a polar orbit appear to tend to have
elongated orbits.

What are all of the asteroids that are classified as ‘IEO’, but are not potentially
hazardous?

SELECT *
FROM (

SELECT full_name
FROM asteroids as a join

classes as c on a.classid=c.id
WHERE c.abbr='IEO'

except
SELECT full_name
FROM asteroids
WHERE PHA

) as not_pha;

Question 21

full_name
(2020 HA10)
(2006 WE4)
418265 (2008 EA32)
(2013 JX28)
164294 (2004 XZ130)
(2017 YH)
(2020 AV2)
(2015 ME131)
(2010 XB11)
(2018 JB3)
(2013 TQ5)
(2019 AQ3)
163693 Atira (2003 CP20)
(2019 LF6)
(1998 DK36)
413563 (2005 TG45)

IEO = Interior Earth Object
An asteroid orbit contained entirely within the orbit of the Earth (Q <
0.983 AU).

Of the Jupiter trojan asteroids, how many pairs of asteroids share the same
diameter (within one meter)?

SELECT count(*)
FROM (

asteroids as a1 join classes as c1
on a1.classid=c1.id)

 join (asteroids as a2 join classes as c2
on a2.classid=c2.id)

 on round(a1.diameter*1000)::
int=round(a2.diameter*1000)::int

WHERE c1.abbr='TJN' and c2.abbr = 'TJN'
and a1.diameter is not null
and a2.diameter is not null
and a1.id < a2.id;

Question 22

count
104

When a1.id < a2.id, this will count each pair only
once.
If it was ‘<>’, it would count (a1, a2) and (a2,a1).

The Jupiter trojans are a large group of
asteroids that share the planet Jupiter's orbit
around the Sun.

There are 8221 Jupiter trojans in this table, for
reference.

In groups of asteroids that are binned by diameter in km, what are all of the bins have more
than 100 asteroids?

SELECT count(*), ceil(diameter) as
diameter_km_approx

FROM asteroids
GROUP BY ceil(diameter)
HAVING count(*) > 100
ORDER BY ceil(diameter) DESC;

Question 23

count
diameter_
km_approx

822315 [null]
116 25
128 24
159 23
175 22
188 21
254 20
274 19
341 18
422 17
538 16
615 15
793 14

1049 13
1371 12
1773 11
2440 10
3566 9
5784 8
9278 7

14646 6
21599 5
28240 4
27603 3
12332 2

616 1

It appears that it is most common that an asteroid does not have a
recorded diameter. Other than that, the 3-4km bin as the most amount
of asteroids in it.

What are the pairs (if any) of objects that share the same path, and what is the
‘distance’ between them (mean and true anomaly)?

SELECT a1.full_name, a2.full_name,
abs(a1.true_anomaly-a2.true_anomaly) as

true_anomaly_diff,
abs(a1.mean_anomaly-a2.mean_anomaly) as

mean_anomaly_diff
FROM (asteroids as a1 join asteroids a2

ON (
round(a1.semimajor_axis::numeric, 3)=
round(a2.semimajor_axis::numeric, 3))
and (round(a1.eccentricity::numeric, 3)=
round(a2.eccentricity::numeric, 3))
and (round(a1.inclination::numeric, 3)=
round(a2.inclination::numeric, 3))

 and (round(a1.arg_periapsis::numeric, 3)=
round(a2.arg_periapsis::numeric, 3))
and (round(a1.asc_node_long::numeric, 3)=
round(a2.asc_node_long::numeric, 3)))

WHERE a1.id < a2.id;

Question 24

To determine an orbit’s path:
● a - SemiMajor Axis
● e - Eccentricity
● i - Inclination
● ω - Argument of the Periapsis
● Ω - Longitude of the Ascending Node

full_name full_name true_anomaly_diff mean_anomaly_diff

(2013 EB88) (2015 VU146) 1.16E-08 0.0003521971151

(2004 HC71) (2011 GD94) 1.55E-08 5.15E-06

306381 (1993 RR2) (2019 HC5) 4.13E-06 0.001162222932

534988 (2014 WF469) (2006 BU292) 3.90E-08 0.000232868972

The result of this query show
that these pairs have an
extremely small distance
between them. Perhaps these
asteroids are closely orbiting
each other, or these objects
were measured and ‘found’
twice.

